
| DUNGEON DUALITY |

1. Quick Overview​ 3
Project Motivation​ 3
Goal of Project​ 3
Use Cases and Features​ 4
User stories​ 4

2. Features​ 4
Feature 1: Multiplayer Lobby System​ 5
Feature 2: Networking Architecture and Synchronisation​ 6
Feature 3: Player Movement and Combat System​ 7
Feature 4: Flexible UI & Screen Sizes​ 8
Feature 5: Enemy AI and Targeting System​ 9
Feature 6: Health and Damage Systems (HUD Bar)​ 10
Feature 7: Coin Collection and Scoring System​ 11
Feature 8: Visual Effects and Animation System​ 11
Feature 9: Audio Management System (Background Music & Sound Effects)​ 12
Feature 10: Multi-Level Progression​ 13

4. Installation Instructions​ 14
System Requirements​ 14
Testing Instructions​ 15

5. Testing​ 16
System Testing​ 16
User Testing & Feedback​ 17

6. Software Engineering Principles​ 19
DRY (Don't Repeat Yourself)​ 19
Separation of Concerns​ 19
Composition Over Inheritance​ 19

7. Further work​ 20
Character upgrading​ 20
Character Skills​ 20
Infinite Space​ 20
Player Cooperation​ 21
Environmental Challenges​ 21
Synchronised game pause and offline mechanics​ 21
Game bosses​ 21
Achievements​ 21
Powerups​ 22
In-game communication​ 22

8. Acknowledgements​ 22

Assets​ 22

1. Quick Overview
The motivation behind Dungeon Duality stems from our desire to
recreate the thrill and strategic camaraderie of dungeon-crawling games,
infused with the addictiveness of roguelike mechanics and multiplayer
cooperation.

Project Motivation

The inspiration for Dungeon Duality comes from our shared love of
games that bring people together through challenge and cooperation.
Whether it was growing up playing co-op with friends on the couch, or
jumping online after a long day to tackle a roguelike dungeon, there was
always something unforgettable about the mix of tension, laughter, and
teamwork that games can create.

When we began talking about this project, we both wanted to recreate
that thrill of working together to overcome tough challenges, even with
people you’ve just met. Games have a unique way of building
connection, trust, and excitement, turning strangers into allies as players
strategize and adapt in the heat of battle.

At its core, Dungeon Duality is about capturing that spirit, and making it
easy to hop into a dungeon with someone, communicate and coordinate,
and come out the other side with shared stories of close calls and
hard-won victories. We wanted to build a game where the experience of
teaming up is as seamless as possible, allowing people to focus on the
fun and the strategy rather than dealing with unnecessary friction.

Drawing inspiration from titles like Survivor.io, Archero, and Dungeons &
Dragons, our aim is to create a networked co-op experience that
challenges players while allowing character progression and
customization.

Goal of Project

The goal is to develop a polished 2D multiplayer dungeon crawler where
two players collaborate to survive through 3 escalating levels filled with
waves of enemies, as the goal is to destroy the enemy tower base.

Use Cases and Features

Core Use Cases:

-​ Multiplayer dungeon crawling with progression
-​ Shared and synced environment for co-op gameplay

User stories

Core user stories:

1.​ As a user, I want to select a unique character before entering a
level, so that I can play according to my preferred playstyle and
avoid visual confusion with my teammate.

2.​ As a user, I want to play a game that becomes progressively more
challenging with each level, so that I stay engaged and feel a
sense of accomplishment as I improve.

3.​ As a user, I want to experience the game with a friend in a co-op
setting, so that we can enjoy the thrill of teamwork, support each
other, and strategise together.

Extensions:

1.​ As a user, I want to chat with my teammate in the lobby using
temporary speech bubbles, so that we can coordinate roles or
character selections before the level begins.

2.​ As a user, I want to be rewarded with achievements and loot
based on specific actions, so that I feel recognised for my unique
gameplay choices.

Tech Stack

-​ Game Engine: Unity
-​ Networking: Unity Netcode for GameObjects (Multiplayer HLAPI)
-​ Version Control: GitHub

2. Features
Here are the features currently implemented in our prototype

Feature 1: Multiplayer Lobby System

Our game includes a custom-designed multiplayer lobby system,
enabling players to host and join cooperative sessions over a network.
The lobby serves as the pre-game staging area where players configure
settings, choose their character (in the future when it is implemented),
and prepare for gameplay.

Key points:

-​ Two-player support with validation: The lobby permits exactly two
players, ensuring consistent game balance.

-​ Start Game Control: Only the host can start the game once both
players are present. This will be later extended to game settings as
well

-​ Level Selection Binding: Level selection in the menu is propagated
to the lobby so that all players join the same game environment.

-​ Scene Persistence: The NetworkManager is marked as persistent
across scenes, maintaining connection state through transitions.

The multiplayer cooperative system is central to the dungeon crawler,
allowing two players to explore and fight together in a synchronized,
collaborative experience. Using Unity’s Netcode for GameObjects, the
system employs a hybrid authority model explained more in Feature 2.

 ​
Disabled on host when only one player is connected.

​
Client does not have a start game button

Feature 2: Networking Architecture and Synchronisation

The networking architecture represents a sophisticated implementation
of Unity's Netcode for GameObjects, designed to provide smooth
multiplayer experiences while maintaining game state consistency. The
system uses a hybrid authority model that balances responsiveness with
security, ensuring that players experience minimal input lag while
preventing common multiplayer issues like desynchronisation and
cheating.

The client-authoritative components, including ClientNetworkTransform
and OwnerNetworkAnimator, handle aspects of the game that require
immediate responsiveness. These components allow clients to make
local changes to position and animation states that are then
synchronised across the network. This approach eliminates the
round-trip delay that would occur if these updates required server

approval, resulting in smooth, responsive gameplay that feels natural to
players.

Server-authoritative systems manage critical game state elements that
require consistency and security. Health values, damage calculations,
and game progression events are processed exclusively on the server to
ensure that all clients maintain synchronized game states. The RPC
system facilitates communication between clients and server, with
[ServerRpc] methods handling client requests and [ClientRpc] methods
broadcasting server decisions to all connected clients.

Feature 3: Player Movement and Combat System

The player movement system provides intuitive and responsive
character control that forms the foundation of the gameplay experience.
Players use arrow keys to navigate through the dungeon environment.
The movement implementation prioritises smooth, physics-based motion
that feels natural and responsive while maintaining network
synchronisation across all connected clients.

Player input is processed exclusively by the local owner to avoid input
conflicts in multiplayer. Directional inputs are translated into normalized
movement vectors that drive smooth, physics-based movement using
Unity’s Rigidbody2D. This approach ensures consistent velocity
regardless of frame rate and provides natural collision responses,
allowing players to collide against enemies or bounce off walls
realistically.

The custom struct is built by us for easier synchronisation across all of
the different GameObjects and scripts for all types of movements.

public struct MovementDirection​
{​
 public float v;​
 public float h;​
}

The combat system integrates tightly with movement by maintaining the
player’s last facing direction, tracked as one of four cardinal directions.
This facing direction governs both weapon positioning and attack
orientation. When the attack input (spacebar) is received, the weapon
dynamically adjusts its position and rotation using 2D Euler angles to
align precisely with the player’s current orientation. This ensures that
melee attacks always originate from and face the expected direction,
even if the player is stationary.

This system delivers responsive and intuitive melee combat that feels
connected to player movement. Visual and audio feedback is
synchronized with attacks to reinforce impact and timing, enhancing
player immersion. The combination of physics-driven movement,
collision handling, and directionally-aware combat contributes to fluid
gameplay and strategic depth, encouraging players to position and time
attacks thoughtfully during cooperative play.

Feature 4: Flexible UI & Screen Sizes

The UI is designed to dynamically adapt to various screen sizes and
resolutions. During development and testing, enabling free size scaling
allowed all UI elements to fit seamlessly within the same screen space.
As a result, the interface maintains a consistent, polished appearance
across different devices and aspect ratios, ensuring a smooth user
experience regardless of screen dimensions.

Feature 5: Enemy AI and Targeting System

The enemy AI system creates challenging and engaging opponents that
actively pursue players and create dynamic combat scenarios. Each
enemy operates independently while maintaining awareness of player

positions and reacting appropriately to player actions. The AI system
balances simplicity with effectiveness, ensuring that enemies provide
meaningful challenge without overwhelming players or creating
frustrating gameplay experiences.

The enemy targeting system implements a basic but effective
player-seeking behavior where enemies automatically identify and
pursue the nearest player character, ensuring that enemies remain
engaged with players throughout the gameplay session and adapt to
changing battlefield conditions.

Movement AI is implemented through a combination of distance
calculation and vector mathematics to create smooth, natural-looking
pursuit behavior. The CalculateMovementVector() method determines
the direction toward the target player and normalizes the resulting vector
to ensure consistent movement speed. The system includes a maximum
engagement distance check, preventing enemies from pursuing players
across the entire map and creating opportunities for strategic retreat and
positioning.

The collision and knockback system adds tactical depth to enemy
encounters by implementing realistic physics responses when enemies
contact players. When an enemy collides with a player, the system
calculates the collision point and applies an appropriate impulse force to
push the enemy away from the player. This mechanism prevents
enemies from becoming stuck against players and creates dynamic
positioning opportunities during combat. The collision timeout system
ensures that enemies don't immediately re-engage after being knocked
back, providing players with brief recovery windows.

Feature 6: Health and Damage Systems (HUD Bar)

The health and damage systems provide the core mechanical framework
for combat encounters and player progression. These systems ensure
that combat has meaningful consequences while maintaining game
balance and providing clear feedback to players about their current
status.

The health system for both players and enemies uses NetworkVariables
to ensure that health values remain synchronized across all clients. The
system implements value change callbacks through the
OnValueChanged event, allowing for immediate UI updates and effect
triggers when health values change.

The damage application system uses server-authoritative Remote
Procedure Calls (RPCs) to ensure that damage calculations are
consistent and cannot be manipulated by clients. When a player or
enemy takes damage, the TakeDamageServerRpc() method is called,
which executes only on the server and updates the authoritative health
value. This approach prevents cheating while ensuring that all clients
receive consistent damage information. The system includes bounds
checking to prevent health values from becoming negative and handles
player death by triggering appropriate game state changes.

Feature 7: Coin Collection and Scoring System

The coin collection system provides immediate rewards for combat
success and creates a foundation for resource management and
progression mechanics. Players earn coins by defeating enemies, with
the collection process providing satisfying audio-visual feedback and
contributing to their overall score. This system encourages active
engagement with enemies and provides measurable progress metrics
for player achievement.

The coin collection mechanism uses Unity's trigger collision system to
detect when players interact with coin objects in the game world.Upon
collection, the system increments the player's coin count, destroys the
coin object, and updates the user interface to reflect the new total. This
process provides immediate feedback and reinforces the reward cycle
for successful combat encounters.

Feature 8: Visual Effects and Animation System

The visual effects and animation system enhances the gameplay
experience by providing immediate feedback for player actions and
game events. The system includes damage indicators, weapon
animations, and character movement animations that create a cohesive
and engaging visual experience. These effects are synchronised across
all network clients to ensure that all players see consistent visual
representations of game events.

The damage visualisation system provides immediate feedback when
players or enemies take damage through temporary blood effects. The
ShowInjuredBlood() method activates blood sprite overlays for a brief
duration, creating visual impact that reinforces the combat system. The
timing system uses Unity's Invoke() method to automatically hide these
effects after a predetermined duration, ensuring that the visual effects
don't become overwhelming or permanent.

The weapon animation system creates dynamic attack visualisations that
correspond to the player's current facing direction. When players attack,
the weapon sprite appears and rotates through a swing animation that
provides satisfying visual feedback. The system adjusts weapon
positioning and rotation based on the attack direction, creating
convincing animations for attacks in all four cardinal directions. The
animation includes collision detection through child objects, ensuring that
the visual weapon swing corresponds to actual damage application.

Character animation is handled through Unity's Animator component,
with the PlayerAnimator class managing animation state transitions
based on player input. The system translates movement input into
appropriate animation states, ensuring that character sprites accurately
reflect the player's current actions. The animation system includes idle,
walking, and directional states that provide visual variety and help
players understand their current movement state and facing direction.

For enemies, we used triggers in Unity’s Animator, that is called from the
Enemy script.

Feature 9: Audio Management System (Background Music & Sound
Effects)

The Audio Management System enriches the immersive experience of
the dungeon crawler by dynamically delivering both ambient background

music and impactful sound effects based on the game context. This
system centralises all audio functionalities into a singleton
AudioManager component, ensuring persistent and globally accessible
sound control across all game scenes and states. By separating music
and sound effects into two dedicated AudioSource instances,
musicSource and sfxSource. the system enables fine-grained control
over audio playback, volume levels, and transitions between musical
themes.

The system initialises during the Awake() phase and persists across
scene loads using Unity's DontDestroyOnLoad, ensuring that audio
playback remains seamless from lobby to gameplay and back. It
provides intuitive public methods to play, pause, resume, and stop
background music, with contextual transitions such as PlayLobbyMusic()
and PlayGameplayMusic() triggered by game state events. To prevent
redundant playback, the PlayMusic() method checks for already playing
clips and skips reloading them if unnecessary.

Sound effects, such as weapon attacks, are handled via the PlaySFX()
method, which uses AudioSource.PlayOneShot() for instant feedback
without interrupting ongoing music. The system also includes muting
controls and runtime volume adjustment interfaces through
SetMusicVolume() and SetSFXVolume() to support player preferences or
adaptive audio balancing. Overall, this system adds auditory depth to the
player experience while maintaining modularity and ease of integration
with game events like combat or scene transitions.

Feature 10: Multi-Level Progression

The game features multiple levels that progressively increase in difficulty
and variety. Each level introduces distinct enemy sprites to visually
communicate differences in enemy strength and damage potential,
helping players quickly identify threats. Alongside visual changes, levels
vary key gameplay parameters such as enemy spawn rates, health
points, attack damage, and the number and locations of spawn points.

These variations create a dynamic challenge curve, requiring players to
adapt their strategies as they advance. Increased spawn rates and
additional spawn points in later levels intensify combat, while tougher
enemies with higher HP and damage values demand more coordinated
teamwork and tactical play. This layered design not only enhances
gameplay depth but also reinforces a sense of progression and
accomplishment.

After each level, either the player finished, or died.

4. Installation Instructions
Our project is accessible at this link, OR download and extract the zip file
named ‘Dungeon Duality.zip’ encased within the folder of 7477.zip (our
code).
https://drive.google.com/drive/folders/1TrQNcTG7e1FmNorMJmFrq7qIG
nRknaC3?usp=sharing

System Requirements

This is only currently tested on Windows 11.

https://drive.google.com/drive/folders/1TrQNcTG7e1FmNorMJmFrq7qIGnRknaC3?usp=sharing
https://drive.google.com/drive/folders/1TrQNcTG7e1FmNorMJmFrq7qIGnRknaC3?usp=sharing

Testing Instructions

Since the game requires multiplayer, you will have to simulate the
multiplayer on your own.

1.​ First, open two identical windows. You may resize the windows to
fit two on the same screen if you do not have a monitor.

On the first window,

2.​ You will arrive at the main menu. Here, select which level you wish
to play by clicking it. Currently all the levels are unlocked for you to
try. The selected level is highlighted in red.

3.​ Click ‘Start new game’. If you did not select a level, the game will
automatically assume you wish to enter the first level.

4.​ You will then enter a lobby that has ‘Connected’ on the left and
‘Waiting…’ on the right, showing that it is waiting for the other
player since this is a 2 player game.

On the second window,

5.​ Choose the same level and click ‘Join existing game’. This will act
as the second player joining the first player’s lobby.

On the first window,

6.​ The button to start the game, which was previously disabled, will
be enabled. It looks like a cloud. Click the button to begin the level.

Each window will then have identical controls.

-​ WASD to move around
-​ Space bar to attack

You may test some features such as

-​ Dying when touching the pothole
-​ Synced movement in 8 directions
-​ Collision with the walls and other player and enemies
-​ Attacking the enemies in 4 directions
-​ Health dropping as enemies attack you
-​ Death from lack of health

-​ Attacking the enemy tower and destroying it

A game over screen or a game won screen will appear for both players if
both players die, or the tower is destroyed respectively.

Have fun!

5. Testing

System Testing

System testing was conducted to verify the overall functionality and
stability of the game before releasing it to users. This phase involved
rigorous internal testing by the development team, focusing on
identifying and fixing bugs, ensuring game mechanics worked as
intended, and verifying network stability for multiplayer features.

Key testing activities included:

●​ Functionality Testing: Ensured all game features such as player
movement, combat, enemy spawning, level progression, and UI
responsiveness operated correctly without crashes or glitches.

●​ Network Testing: Validated synchronization across clients in
multiplayer sessions, checked latency handling, and ensured
consistent game state during typical gameplay and edge cases like
player disconnections.

●​ Compatibility Testing: Tested the game on various screen sizes
and resolutions to confirm the flexible UI scaled properly and
remained usable.

●​ Regression Testing: Repeated tests after fixes to ensure that new
changes did not break existing features.

The system testing phase provided the foundation of a stable and
playable game, reducing the risk of major issues during user testing.

User Testing & Feedback

We tested the game with a few of our friends and families, and here
were some of the responses we got.

QUESTION ANSWER

Was the objective of the game clear from
the beginning?

Yes, quite clear, although it took me a while
at first to realise I needed to knock down the
white pillar.

Did the pacing of the game feel appropriate
across the 3 levels?

Yes, because it got gradually harder to
complete after each level.

How satisfying did you find the core game
loop (exploration, combat, coin collection)?

The later challenges were challenging
enough that it was possible to die, so
beating those levels felt quite rewarding.

Were you ever unsure what to do next or
how to progress in the level?

No, as the objective remained constant
throughout the levels.

Was it easy to connect with another player
and start a session?

Yes.

How well did the two-player mechanics
(e.g., shared goals, coordination) work?

Well, we kind of both just spammed the
pillar....so not much coordination there.

Was it easy to stay synchronized with your
teammate (e.g., no major lag/desync
issues)?

Yes, no lag issues.

Did the co-op experience feel meaningful
and encourage teamwork?

Yes, I used my teammate as a meat shield
which was fun and encouraged teamwork.

How intuitive were the basic controls
(movement, attacking, etc.)?

Quite intuitive once I found the controls, but
took me a while to find them (instructions
would be good).

Did the combat feel responsive and
impactful?

Yes, animations, sound effects and health
bars helped me to gauge the timing and
impact of my attacks.

Was there any input lag or
unresponsiveness, especially in
multiplayer?

Nope, no input lag.

Did enemies pose a fair challenge? Yes, it got decently challenging in the later
stages.

Did the enemy AI behavior feel dynamic or
too predictable?

They kind of just rush you with attacks
which is predictable, but at least the spawn
locations are random which is good.

Did enemy variety keep the gameplay
interesting across levels?

Sadly no, as they all more or less function
the same way across levels, just with

varying attack damage.

Did knockback and other feedback effects
enhance the combat experience?

Yes, it felt like I was being forced into a
corner by the enemies at times which was
quite fun.

Did the level design offer enough visual
variety to prevent confusion?

Yes, the different enemies between levels
was a good touch.

Was it easy to monitor your health and
other key stats?

Yes, it was very clear easy to monitor due to
its size

How clean or cluttered did the HUD feel? Placement of the health bars felt a bit
random, the one for the pillar seems too
high and the one for the player is not near
any of the edges.

Would tooltips or item descriptions be
helpful during gameplay?

Instructions and descriptions would make it
feel more immersive.

Did you experience any bugs, glitches, or
unexpected behavior?

Sometimes I was bumped off the screen by
enemies and unable to reenter the screen. I
also occasionally had some trouble starting
games after finishing a level (even when
both players were connected).

Did the game handle death, game over, and
victory transitions properly?

Yes, there were clear UI interactions and
graphics to show them`

Would you be interested in character
upgrades or different classes?

Yes, I would like to see different kinds of
attacks for the players and the enemies to
spice things up.

Would randomly generated environments
enhance replayability for you?

Yes, rogue-likes are quite enjoyable
although they also need to have interesting
variations - a common way to achieve this is
to enable all kinds of interactions (between
items, enemies, playable characters).

How appealing are power-ups and
environmental hazards as gameplay
additions?

Very, I want to have something stopping me
from simply dashing to the pillar to spam
attacks before I die.

What was the most enjoyable part of the
game?

Killing the enemies was satisfying as heck,
although there was no great incentive for
me to do so - coins don't do anything, and
in levels 2 and 3 I got swarmed so much
that I had to focus on hitting the pillar before
I died.

What was the most frustrating part of the
game?

Navigating back to the levels I wanted to
replay, and having to press many
buttons/restart game to do so.

What suggestions do you have for The co-op is quite solid, I would focus on

improving the co-op experience? improving level design and in-game
interactions. But for co-op specifically, you
could have enemies that only 1 player can
see but only the other can attack.

Would you recommend this game to a
friend? Why or why not?

I would, as it is fun to move around in the
arena together. However, as a game it is
quite simplistic at the moment, although still
fun.

6. Software Engineering Principles

DRY (Don't Repeat Yourself)

We made a conscious effort to avoid duplicating code. A clear example
is the enemy logic, which reused a single Enemy.cs script across all
levels.

Although the enemy prefabs varied due to different animations, the
underlying script remained the same, which helped us manage shared
behavior efficiently.

Separation of Concerns

We had basic separation between gameplay (Player.cs, Enemy.cs),
networking (ClientNetworkTransform.cs, NetworkManager), and UI
(contained within the UI/ folder).

However, due to time constraints, some scripts like Player.cs and
GameManager.cs started becoming bloated, taking on more
responsibilities than they ideally should have.

Composition Over Inheritance

Our behaviors were mostly built using composition. For example:

Attack behaviors were encapsulated in Weapon.cs and
WeaponCollider.cs instead of subclassing from Player.cs.

Animation syncing was handled separately via PlayerAnimator.cs.

This approach helped us keep scripts reusable and easy to debug.

7. Further work
There is potential to develop a polished 2D multiplayer dungeon crawler
where two players collaborate to survive through 20 escalating levels
filled with waves of enemies, culminating in a final boss fight. Along the
way, players will collect loot, upgrade their characters, and make
strategic decisions that affect both short-term survival and long-term
progression.

Character upgrading

We plan to expand this project into having multiple characters with
multiple attack types and different stats (movement speed, attack speed,
attack range, etc.). The player should be able to raise his stats with coins
and special items collected.

Character Skills

The characters all come with a special skill. For example, the healer can
heal the lowest health member every specific time interval. The giant can
create shockwaves that damage an AOE surrounding him with every
specific number of attacks.

Infinite Space

We plan to generate a repeating tilemap with randomly generated areas
(environments such as ice, grass, volcanic, etc.) and random
environmental items such as rocks, houses, campfires (where
characters can heal at).

Player Cooperation

Further to the multiple characters, we also plan to have players
cooperate more by being able to revive each other within 20 seconds of
being downed, but will require an inactivity of 5 seconds.

Environmental Challenges

We wanted to integrate different environmental challenges (e.g. thorns
that prevent movement and causes damage over time, lightning that
strikes the an area on the ground, earthquakes that stun the player, etc.).
However, unfortunately, we didn’t have much time to do these.

Synchronised game pause and offline mechanics

The multiplayer game right now is not optimised for co-op as the player
is reliant on the other player not going offline in the middle of the game.
Game pauses by the host should be enabled, and the game ending
when one player goes afk should also be implemented.

Game bosses

At the end of every level, after the tower is destroyed, a unique game
boss should be placed, angry about his tower being destroyed. Then the
boss mechanics will be different from level to level, and the player has to
fully beat this boss in order to move onto the next level.

Achievements

Achievements can be unlocked that give special items that can be
equipped such as a helmet or a coat. This will give stat boosts or special
skills. For example, a medic achievement which can be unlocked by
reviving a player 3 times, will give the passive skill of +5 to health every
1 minute to both players.

Powerups

During the level, small powerup items will be placed that can give a
time-limited boost to the characters. For example, a health potion will
add some health, a rage potion will increase attack damage, movement
speed and attack speed for 10 seconds, etc.

In-game communication

Chat bubbles, preset chat messages and emotes will be added as a part
of improving the user experience as well.

8. Acknowledgements

Assets

We used free assets from CraftPik for sprites, Vecteezy and FreePik for
backgrounds.

	
	1. Quick Overview
	Project Motivation
	Goal of Project
	Use Cases and Features
	User stories

	2. Features
	Feature 1: Multiplayer Lobby System
	
	Feature 2: Networking Architecture and Synchronisation
	
	Feature 3: Player Movement and Combat System
	
	Feature 4: Flexible UI & Screen Sizes
	
	Feature 5: Enemy AI and Targeting System
	
	Feature 6: Health and Damage Systems (HUD Bar)
	
	Feature 7: Coin Collection and Scoring System
	
	Feature 8: Visual Effects and Animation System
	
	Feature 9: Audio Management System (Background Music & Sound Effects)
	Feature 10: Multi-Level Progression

	4. Installation Instructions
	System Requirements
	Testing Instructions

	5. Testing
	
	System Testing
	User Testing & Feedback

	6. Software Engineering Principles
	
	DRY (Don't Repeat Yourself)
	Separation of Concerns
	Composition Over Inheritance

	7. Further work
	Character upgrading
	Character Skills
	Infinite Space
	Player Cooperation
	
	Environmental Challenges
	Synchronised game pause and offline mechanics
	Game bosses
	Achievements
	Powerups
	In-game communication

	8. Acknowledgements
	Assets

